UBMS STATE

MATH:

Algebra 2:

If John takes 3 hours to mow a lawn and Mary takes 2 hours to mow the same lawn, how much time do you think it will take for Mary and John to mow the lawn together?

Solve:

$$
\begin{aligned}
& Y=-3 X+4 \\
& X+4 Y=-6
\end{aligned}
$$

Pre-calculus:
Functions and domain:
Domain refers to X axis
Range refers to Y axis

Problem 1:

Find if the following is a function or not:

$$
Y=2 X+8
$$

Problem 2:

Find the domain and range for the following functions:
a) $Y=X^{\wedge} 2-3$
b) $Y=-X^{\wedge} 2+2$

Problem 3:
If $f(x)=X^{\wedge} 2+4 X$ and $g(x)=3 x-5$, find $(f * g)(x)$ and $\left(g^{*} f\right)(x)$.

Percentage:
Let's take a look at the following PDF:
Introduction to Percentages.pdf.

Problem:

A birthday celebration treat at a nearby restaurant costs $\$ 46$ for Jacob. This total is including the tax amount of 8% of the meal cost. Find the meal cost and the amount required to tip the server, if Jacob decides to give a tip of 15%.

Formulas:
For matrix multiplication:
$A B=\left[c_{i j}\right]$, where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{\text {in }} b_{n j}$.

Multiply
$\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 11 & 2\end{array}\right]\left[\begin{array}{cc}3 & -1 \\ 1 & 2 \\ 6 & 1\end{array}\right]$

PHYSICS:

- $d=v_{o} \bullet t+0.5 \bullet a \bullet t^{2}$
- $V_{f}=V_{o}+a$ - t
- $v_{f}{ }^{2}=v_{o}{ }^{2}+2 \cdot a \cdot d$
- $d=\left(v_{o}+v_{f}\right) / 2 \cdot t$

Problem 1:

A race car accelerates uniformly from $18.5 \mathrm{~m} / \mathrm{s}$ to $46.1 \mathrm{~m} / \mathrm{s}$ in 2.47 seconds.
Determine the acceleration of the car and the distance traveled.

Problem 2:

A stone is dropped into a deep well and is heard to hit the water 3.41 s after being dropped. Determine the depth of the well.

Problem 3:

The graph below is that of the height of a ball thrown vertically upward. At which point is the velocity close or equal to zero?

www.problemsphysics.com

Problem 4:

When a car's speed changes from $20 \mathrm{~m} / \mathrm{s}$ to $40 \mathrm{~m} / \mathrm{s}$, what happens to its kinetic energy?

Questions?

